
Beolink.org!

Why do I have to use a Message Queue System ? 
 
 
 
Fabrizio Manfred Furuholmen"

Beolink.org!

Europython 2012"
2"

Agenda

§  Introduction
§  History
§  Basic components

§  Message Queue
§  Usage type
§  Advantages

§  Implementation
§  Solution
§  Performance
§  Scalability/High Avaibility

§  Big Data
§  Distributed
§  Cloud Computing

Beolink.org!

9/3/12"
3"

Introduction: Example

Process A!
Filesystem!

FTP Server! Process B!

Get Message!Message: !
2012082609000000-Serial-Type-ProcessB.xml!
!
!

Ack Message: !
2012082609000000-Serial-Type-OK.xml!

Multimedia Format Transcoding!

More than 10 years ago!

Beolink.org!

9/3/12"
4"

Introduction: Definition

"
"
"
“…message queueing is a method by which process (or
program instance) can exchange or pass data using an
interface to a system-managed queue of message...”"

Beolink.org!

9/3/12"
5"

Introduction: Components

Process A!
Filesystem!

FTP Server! Process B!

Get Message!Message: !
2012082609000000-Serial-Type-ProcessB.xml!
!
!

PRODUCER! BROKER! CONSUMER!

Ack Message: !
2012082609000000-Serial-Type-OK.xml!

Topic!
Queue!

Beolink.org!

9/3/12"
6"

Introduction: Broker

"
“…message broker is an architectural pattern for message
validation, message transformation and message routing.
It mediates communication amongst applications,
minimizing the mutual awareness that applications should
have of each other in order to be able to exchange
messages, effectively implementing decoupling…”

Message-oriented middleware��� (MOM)

Beolink.org!

9/3/12"
7"

Is message queue
middleware only a temporary

storage ?

Beolink.org!

9/3/12"
8"

Message Queue

q Asynchronous
communication
q  Lock
q Concurrent Read/Write

q Burst Message

q Decoupling
q Reliability

q Multi platform

P! C!

Es."
"
Multimedia Converter"
"
SMS gateway "
"

Beolink.org!

9/3/12"
9"

Message Queue: Multi Processing

q Parallel processing

q Load Balancing

q High Availability

q Elastic

q Maintenance operation

P! C!

C!

C!

P!

P!

C!

Es."
"
Image converter"
"
Billing Event"
"
User Provisioning"
"

Beolink.org!

9/3/12"
10"

Message Queue: Pub/Sub

q Sending messages to

many consumers at
once

q Event Driven
P! C!

C!

C!

X!

Es."
"
Push notification"
"
Chat Room"
"

Beolink.org!

9/3/12"
11"

Message Queue: Routing

q Static with routing key

q Pattern base
q Pattern topic
q Dynamic with header

evaluation
P! C!

Queue A! C!

C!

Queue B!

Queue C!

X!

Es."
"
Logging collector"
"
User Provisioning on "
 target System"
"
Info Sync"

Beolink.org!

9/3/12"
12"

Message Queue: RPC

q Remote Procedure Call
q  Single queue for Consumer
q One queue for each Producer
q  Reply to options

P! C!
Queue !

Tmp Queue !

Es."
"
Distributed Scheduler"
CallBack"
WAN comunication"
"

Beolink.org!

9/3/12"
13"

Message : More …

q Persistent Message

q Queue
q Priority / Re ordering
q Message Group
q QOS / rating

q Deduplication

q Broker Network
q Cluster
q Load distribution over

WAN
q Message routing

Beolink.org!

9/3/12"
14"

Simple solution to a
complicated problem!

Beolink.org!

9/3/12"
15"

Implementation

q Internal implementation
q  Python (Queue), Perl (Thread::Queue) ...

q Nosql Based
q  Redis, MongoDB, Memcache …

q Framework
q Generic application framework: Gearman
q  Stomp Based: ActiveMQ, Apollo…
q  AMQP Based:RabbitMQ, Qpid…
q Other : kafka…

q Alternative solutions
q  Broker less (0MQ, Crossroads I/O)

q Services

Beolink.org!

9/3/12"
16"

Implementation:Message Format

q Internal / Object

q STOMP
Simple (or Streaming) Text Oriented Message Protocol (STOMP) is a simple
text-based protocol, designed for working with Message Oriented
Middleware

q AMQP
Advanced Message Queuing Protocol is an application layer protocol,
designed to efficiently support a wide variety of messaging applications and
communication patterns.

q XMPP
Extensible Messaging and Presence Protocol

q JSON
JavaScript Object Notation, is a text-based

Beolink.org!

9/3/12"
17"

Implementation: NoSQL

Redis Internal Function

"
The HTTP operation on url:"
 /queue/<queuename> "
"
Post Message"
{"
 "cmd": "add","
 "queue": "genesis","
 "value": "abacab""
}"
"
Get Message"
{"
 "cmd": "take","
 "queue": "genesis""
}"
The message can be formatted as a json object, so
more complex data can be sent. It was inspired by
Amazon SQS "

RestMQ

"
self.redis = redis.StrictRedison (…)"
"
def send(self,queue,message):"
 self.redis.rpush(queue,message)"
"
def recv(self,queue)"
 return self.redis.blpop(queue)"
"
"
Queue Name = KEY"
Message = Value"
Queue = List "
Notify = Event "

Demo sub/pub :https://gist.github.com/348262"

Beolink.org!

9/3/12"
18"

Implementation: AMQP

RabbitMQ

#!/usr/bin/env python"
import pika"
"
connection =
pika.BlockingConnection(pika.ConnectionParameters("
 host='localhost'))"
channel = connection.channel()"
"
channel.queue_declare(queue=’myqueue')"
"
channel.basic_publish(exchange='',"
 routing_key=’myqueue',"
 body=’message 1 ')"
print " [x] Sent ’Message 1""
connection.close()"
"
"
"
"
"

#!/usr/bin/env python"
import pika"
"
connection =
pika.BlockingConnection(pika.ConnectionParameters("
 host='localhost'))"
channel = connection.channel()"
"
channel.queue_declare(queue=’myqueue')"
"
print ' [*] Waiting for messages. To exit press CTRL+C'"
"
def callback(ch, method, properties, body):"
 print " [x] Received %r" % (body,)"
"
channel.basic_consume(callback,"
 queue=’myqueue',"
 no_ack=True)"
"
channel.start_consuming()"

Producer Consumer

Beolink.org!

9/3/12"
19"

Implementation: Alternatives

ZeroMQ

#!/usr/bin/env python"
"
import zmq ""
context = zmq.Context() ""
socket = context.socket(zmq.REQ) ""
socket.bind("tcp://127.0.0.1:5000") ""
 ""
while True: ""
 msg =”my msg”"
 socket.send(msg) ""
 print ”Send", msg ""
 msg = socket.recv()

#!/usr/bin/env python"
"
import zmq ""
context = zmq.Context() ""
socket = context.socket(zmq.REP) ""
socket.bind("tcp://127.0.0.1:5000") ""
 ""
while True: ""
 msg = socket.recv() ""
 print "Got", msg ""
 socket.send(msg)"

Producer Consumer

Beolink.org!

9/3/12"
20"

…, but it is not fast
enough …

Beolink.org!

9/3/12"
21"

Performance: Redis

The Linux box is running Linux
2.6, it's Xeon X3320 2.5 GHz."
"
Text executed using the
loopback interface (127.0.0.1)."

Beolink.org!

9/3/12"
22"

Performance: RabbitMQ

PowerEdge R610 with dual
Xeon E5530s and 40GB RAM!

Beolink.org!

9/3/12"
23"

Performance: ActiveMQ/Apollo

!
EC2 High-CPU Extra Large Instance EC2
xlarge !
!
7 GB of memory"
20 EC2 Compute Units (8 virtual cores with 2.5
EC2 Compute Units each)"
model name ": Intel(R) Xeon(R) CPU
E5506 @ 2.13GHz"
"
OS: Amazon Linux 64bitLinux ip-10-70-206-42
2.6.35.14-97.44.amzn1."
"
5 Consumer"
5 Producer"

Producer"

Consumer"

Apollo"
ActiveMQ"

Beolink.org!

9/3/12"
24"

Performance: kafka

message size = 200 bytes"
batch size = 200 messages"
fetch size = 1MB"
flush interval = 600 messages"

Beolink.org!

9/3/12"
25"

Performance: zeroMQ

Box 1:"
8-core AMD Opteron 8356, 2.3GHz"
Mellanox ConnectX MT25408 in 10GbE mode"
Linux/Debian 4.0 (kernel version 2.6.24.7)"
ØMQ version 0.3.1"
"
Box 2:"
8-core Intel Xeon E5440, 2.83GHz"
Mellanox ConnectX MT25408 in 10GbE mode"
Linux/Debian 4.0 (kernel version 2.6.24.7)"
ØMQ version 0.3.1"

Throughput gets to the maximum of 2.8 million messages !
per second for messages 8 bytes long!

Beolink.org!

9/3/12"
26"

Performance

Beolink.org!

9/3/12"
27"

Performance

q Persistence
message can fault down to hundreds of message
per Second

q Bandwidth
Message size and Acknowledge increase the usage
of bandwidth

q Topics
The routing based on the value of header, increase
the delay

q Queue
Number of queue increase the delay

q Cluster
Replication message increase the time for the
acknowledgement

Beolink.org!

9/3/12"
28"

Big Data

Beolink.org!

9/3/12"
29"

Big Data

Big data spans three dimensions

q Volume
Enterprises are awash with ever-growing data of all types, easily
amassing terabytes—even petabytes—of information.

q Velocity
Sometimes 2 minutes is too late. For time-sensitive processes such
as catching fraud, big data must be used as it streams into your
enterprise in order to maximize its value.

q Variety
Big data is any type of data - structured and unstructured data such
as text, sensor data, audio, video, click streams, log files and more.

Beolink.org!

9/3/12"
30"

Big Data

Big Data! Message Queue!
Volume! Load Balancing:"

-  with Multi Brokers Conf"
-  with Multi queues Conf"

Velocity! Parallel Processing"
-  Balance base on time spent"
-  Increase capacity on demand"

High Availability"
Variety! Routing Key"

"
Path "

 - Header analysis"
 - Topic"

Beolink.org!

9/3/12"
31"

Big Data: Linkedin

http://incubator.apache.org/kafka/design.html"
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf"

End User action Tracking
Operational Metrics
Forntend (Producer)= 100Mb/s
Bakend (Consumer) = 200Mb/s

Broker!

Load Balancer!

Realtime! Hadoop"Realtime"

FD! FD! FD!

Broker!
Broker!

Broker!
Broker!

Broker!

DWH!

Main Datacenter! Analysis Datacenter!

Beolink.org!

9/3/12"
32"

Big Data: Soocial.com

http://aws.typepad.com/aws/2008/12/"

Synchronization
btw different
applications

Collect tracking
data

Beolink.org!

9/3/12"
33"

Big Data: CERN
Architecture

Component drilldown

fusesource.com/collateral/download/82/"

Monitor reliability
and availability of
European
distributed
computing
Infrastructure
(GRID)

100K system
Monitored

Beolink.org!

9/3/12"
34"

Big Data: OpenStack

OpenStack
Coordination and
provisioning

RackSpace
Cloud Management
Tasks

Beolink.org!

9/3/12"
35"

Cloud Computing: Netflix

Transcoding
media conversion
for different device
and channels

Beolink.org!

9/3/12"
36"

Cloud Computing

"
"

“Everything fails all the time”"
"

" "" "Werner Vogels "

CTO of Amazon"

Beolink.org!

9/3/12"
37"

Cloud Computing: SLA

"

SLA"
•  Amazon’s EC2 availability SLA is

99.95% = 4.38 hours = 16680 sec "

RTO"
•  Restarting time = 5 minutes = 300

sec "

Event" •  55 Reboot per year"

No one declare the MTBF !!!!

Beolink.org!

9/3/12"
38"

Cloud Computing: Design

Design your application architecture for
failure. Don’t look for alternatives"

"
…split your applications into different components

and, make sure every component of your
application has redundancy with no common points

of failure…"

Beolink.org!

"
"
"

MOM!

Auto Scaling!

Auto Scaling!

9/3/12"
39"

Cloud Computing: Architecture

Load Balancer!

FD! FD! FD!

Broker! Broker"

BL! BL" BL"

Back End / Storage"

cache"

Beolink.org!

9/3/12"
40"

Cloud Computing: Multi site

"
BROKERS!

!
WAN MOM!

SITE A

SITE B

SITE C W QUEUE"

W QUEUE"

W QUEUE"

LOCAL MOM! LOCAL MOM!

LOCAL MOM!

Beolink.org!

9/3/12"
41"

Cloud Computing: Design

High Availability!
"

Beolink.org!

9/3/12"
42"

Cloud Computing: Scalability / HA

q Master-Salve topology
queue is assigned to a master node, and all changes to the queue are also replicated to a salve node. If the
master has failed, the slave can take over. (e.g. Qpid and ActiveMQ, RabbitMQ)."

"

q Queue Distribution
queues are created and live in a single node, and all nodes know about all the queues in the system. When a
node receives a request to a queue that is not available in the current node, it routes the request to the node that
has the queue. (e.g. RabbitMQ)"

q Cluster Connections "
Clients may define cluster connections giving a list of broker nodes, and messages are distributed across those
nodes based on a defined policy (e.g. Fault Tolerance Policy, Load Balancing Policy). It also supports message
redistribution, and it plays a minor role in this setup."

"

q Broker networks
The brokers are arranged in a topology, and subscriptions are propagated through the topology until messages
reach a subscriber. Usually, this uses Consumer priority mode where brokers that are close to the point of origin
are more likely to receive the messages. The challenge is how to load balance those messages. (e.g. ActiveMQ)"

Beolink.org!

9/3/12"
43"

Cloud Computing: Cluster

"
"
"

MOM!

!
!
!
!
!
!
!
!
!

Cluster!

Node! Node! Node!

Inter node Comunication!
Internal Message Routing!

Storage! Storage" Storage"

Client! Client! Client! Lookup!
-  Defined IP"
-  Multicast"
-  BootStrap"
-  Agent"

Beolink.org!

9/3/12"
44"

Cloud Computing: Cluster

RabbitMQ:"
http://skillsmatter.com/custom/presentations/talk4.rabbitmq_internals.pdf"

Configuration!
Two Cluster "
with one node"
"
Single Cluster "
with two nodes"
"

Beolink.org!

9/3/12"
45"

Cloud Computing: Federation/
Shovel

RabbitMQ:"
http://skillsmatter.com/custom/presentations/talk4.rabbitmq_internals.pdf"

Beolink.org!

46"

A
re

 y
ou

 h
ap

py
?!

9/3/12"

Beolink.org!

9/3/12"
47"

Critical Points

q Dimension
q  Message Size
q  Number of Queue
q  Persistence
q  Delay of the queue

q Persistence only when you need

q Cluster on client side or via
boostrap

q Acknowledge when you need

q Topic vs Queue

q Queue Length

q Performance Test

E = (P/C-1)*T"

L = (P-C)*T

Beolink.org!

9/3/12"
48"

More complex

ρ = λ / µ"
Exponential probability density"

All customers have the same value"

Any arbitrary probability distribution"

Processing Delay"Transmission Delay"

Propagation Delay"

Beolink.org!

9/3/12"
49"

Last but not ..

Message Queue Performance "
http://hiramchirino.com/stomp-benchmark/"
Kafka "
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf"
"
RestMQ"
http://restmq.com/"
"
ActiveMQ"
http://www.activemq.org"
"
RabbitMQ"
http://www.rabbitmq.com"
"
ZeroMQ"
https://zeromq.org"
"
Cloud application"
http://www.eecs.qmul.ac.uk/~luca/pi_meets_industry/slides/Richardson.pdf"
http://www.slideshare.net/gojkoadzic/achieving-scale-with-messaging-and-the-cloud"
http://www.slideshare.net/AmazonWebServices/highly-available-websites-in-aws"

Many Vendor
Products"

Redhat key
sponsor of

Qpid"

RedHat
acquired

Fusesourse"

Vmware
acquired

RabbitMQ"

Message
Queue as a

Service"Cloud "

Beolink.org!

9/3/12"
50"

Conclusion

"
The science of programming: "
"
“…make building blocks that people can understand and use
easily, and people will work together to solve the very largest
problems.”"

Beolink.org!I look forward to meeting you…

XVII European AFS meeting 2012
University of Edinburgh

October 16th to 18th

Who should attend:
§  Everyone interested in deploying a globally accessible

file system
§  Everyone interested in learning more about real

world usage of Kerberos authentication in single
realm and federated single sign-on environments

§  Everyone who wants to share their knowledge and
experience with other members of the AFS and
Kerberos communities

§  Everyone who wants to find out the latest
developments affecting AFS and Kerberos

More Info: http://openafs2012.inf.ed.ac.uk/

9/3/12"
51"

Beolink.org! #

Thank you  
 
manfred@freemails.ch 
http://www.beolink.org"

Beolink.org!

9/3/12"
53"

Message Queue Length

Which is the right size ? "
"

 ""
"…30% extra capacity

Beolink.org!

9/3/12"
54"

Basic Formula

E = (P/C-1)*T

Capacity!

Burst Time!Peak!

Elapsed!

Beolink.org!

9/3/12"
55"

Basic Formula

L = (P-C)*T

Length!

Peak!

Capacity!

Burst Time!

